MEF2 activation in differentiated primary human skeletal muscle cultures requires coordinated involvement of parallel pathways.
نویسندگان
چکیده
The myocyte enhancer factor (MEF)2 transcription factor is important for development of differentiated skeletal muscle. We investigated the regulation of MEF2 DNA binding in differentiated primary human skeletal muscle cells and isolated rat skeletal muscle after exposure to various stimuli. MEF2 DNA binding activity in nonstimulated (basal) muscle cultures was almost undetectable. Exposure of cells for 20 min to 120 nM insulin, 0.1 and 1.0 mM hydrogen peroxide, osmotic stress (400 mM mannitol), or 1.0 mM 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) led to a profound increase in MEF2 DNA binding. To study signaling pathways mediating MEF2 activity, we preincubated human skeletal muscle cell cultures or isolated rat epitrochlearis muscles with inhibitors of p38 mitogen-activated protein kinase (MAPK) (10 microM SB-203580), MEK1 (50 microM PD-98059), PKC (1 and 10 microM GF109203X), phosphatidylinositol (PI) 3-kinase (10 microM LY-294002), or AMP-activated protein kinase (AMPK; 20 microM compound C). All stimuli resulted primarily in activation of MEF2D DNA binding. Exposure of cells to osmotic or oxidative stress increased MEF2 DNA binding via pathways that were completely blocked by MAPK inhibitors and partially blocked by inhibitors of PKC, PI 3-kinase, and AMPK. In epitrochlearis muscle, MAPK inhibitors blocked contraction but not AICAR-mediated MEF2 DNA binding. Thus activation of MEF2 in skeletal muscle is regulated via parallel intracellular signaling pathways in response to insulin, cellular stress, or activation of AMPK.
منابع مشابه
mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo
Skeletal muscle development requires the coordinated expression of numerous transcription factors to control the specification of mesodermal progenitor cells to a muscle fate and the differentiation of those committed myoblasts into functional, contractile muscle. Two families of transcription factors play key roles in these processes. The myogenic basic helix-loop-helix (bHLH) proteins, MyoD a...
متن کاملپاسخ ژن mef2 عضله کند و تند انقباض رتهای نر نژاد ویستار به یک جلسه تمرین مقاومتی
Introduction: Myocyte Enhancer Factor 2 (mef2) gene relates with multiple myogenic transcriptional factors that induces activation Muscle-specific genes. MEF2 contributes in muscular cells development and differentiation as well as in fibers transition in response to stimulants. Therefore, the aim of this study was to evaluate the effect of one bout of resistance exercise (RE) on mef2 gene expr...
متن کاملExercise-Induced Hypertrophic and Oxidative Signaling Pathways and Myokine Expression in Fast Muscle of Adult Zebrafish
Skeletal muscle is a plastic tissue that undergoes cellular and metabolic adaptations under conditions of increased contractile activity such as exercise. Using adult zebrafish as an exercise model, we previously demonstrated that swimming training stimulates hypertrophy and vascularization of fast muscle fibers, consistent with the known muscle growth-promoting effects of exercise and with the...
متن کاملVasopressin-dependent myogenic cell differentiation is mediated by both Ca2+/calmodulin-dependent kinase and calcineurin pathways.
Arg8-vasopressin (AVP) promotes the differentiation of myogenic cell lines and mouse primary satellite cells by mechanisms involving the transcriptional activation of myogenic bHLH regulatory factors and myocyte enhancer factor 2 (MEF2). We here report that AVP treatment of L6 cells results in the activation of calcineurin-dependent differentiation, increased expression of MEF2 and GATA2, and n...
متن کاملAlpha-synuclein induced apoptosis and proliferation interacted with CD44 in human lymphocytes
Human ?-synuclein is a 140 amino acid protein with little or no secondary structure. The ?-synuclein is expressed at high levels in the brain and enriched in neural synaptic terminals but its physiological function remains largely unknown. More recently, ?-synuclein has been shown to be one of the principal componets of Lewy bodies, neuronal inclusions that are found in diverse human neurodegen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 286 6 شماره
صفحات -
تاریخ انتشار 2004